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Abstract

Many current algorithms for nonlinear constrained optimization
problems determine a direction by solving a quadratic programming
subproblem. The global convergence properties are addressed by using a line
search technique and a merit function to modify the length of the step
obtained from the quadratic program.

In unconstrained optimization, trust regions strategies have been very
successful. In this paper we present a new approach for equality constrained
optimization problems based on a trust region strategy. The direction
selected is not necessarily the solution of the standard quadratic
programming subproblem.
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1. Introduction. Consider the equality constrained optimization
problem : ~

minimize f(T)

(NLE) subject to g() =0,

where f:R* >R and g:R"->R™(msn). It is assumed that the
problem functions are at least twice continuously differentiable, that a
solution exists, and that Vg(z) has full rank.

Several authors including Fletcher [2], Gay [3], and Sorensen [12],
have considered a trust region approach for optimization problems with
linear constraints. From a theoretical point of view, the extension from
unconstrained - optimization to linearly constrained optimization is
somewhat straightforward; one merely focuses attention on the subspace
of interest. For nonlinear constraints the extension is not at all clear.
The main attempt in this area has been Vardi [14]. While this work
contains some interesting results, it leaves several important questions
unanswered. Our objective is to develop an effective trust region
algorithm for problem NLE.

2. Motivation for Our Approach. One of the more successful methods
for solving problem NLE is the successive quadratic programming (SQP)

approach where, at each iteration, the step is calculated as the solution
of the quadratic programming problem :

minimize Qgp(s) = VL NTs + %srBs

(QP) subject to g(z) + Vgmis =0,

where V_L(z,\) is the gradient of the Lagrangian function
L(z.\) = fiz) + Ng@),

AER™, and B is an approximation to V2.Liz,\). The step for the

multiplier A is obtained-as the multiplier associated with the solution of
problem QP. :

The most natural way to introduce the trust region idea is to add a
constraint which restricts the size of the step in problem QP, see Vardi
[14]. However, this approach may lead to inconsistent constraints, and
it is not clear how to overcome this problem. Instead of adding the trust
region constraint to the standard QP problem, we consider adding it to a
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somewhat different problem.

Suppose we want to solve g(z)=0 using a standard trust region
method. We have a current point z, and a bound A, on the length of the

step we are willing to take from z.. At each iteration the step is
calculated by solving : '

minimize %ll g(ze) + Vg(-’Cc)TS 113

subject to Il s llz = A

where || ||, denotes the 2-norm.

If the algorithm simply took the ''best steepest descent step”, i.e.
the Cauchy step scp, then under reasonable assumptions global
convergence can be demonstrated, see Powell [10], Moré and

Sorensen [7], and Schultz, Schnabel and Byrd [11]. That is, as long as
the step s satisfies

llgz)+VgE)TslE £ g +Vg(zo) sl

convergence to a solution of g(z) = 0 is obtained. This fact is the basis
for our approach.

Define the set Y as

Y=4%s: lisll; £ A, and
llg(o)+Vg)Tsl < llgz)+ Vg scllf § -

That is, Y is the set of steps from z, that are inside the trust region and
give at least as much descent on the 2-norm of the residuals of the
linearized constraints as the Cauchy step, (see Figure 1). By choosing
any point in Y we will generate a sequence which is guaranteed to
converge to a feasible point. We take advantage of this freedom by
choosing an s which minimizes a quadratic model, q(s), of the objective
function f over Y. The step is calculated by solving the problem :

minimize qc(s)
subject to sl = A,
Il g(ze) + Vg(:l:c)TS ”% 6.,

where g¢,(s) is a quadratic approximation to the function f and
8. = Il gze) + VaaTsep 15
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llg (Ic) +Vg (Ic)Tsl ‘%

FIGURE |

3. Theory. We consider the problem :

minimize q(s) = aTs + LsTBs
(QPQ) subject to llsllp S A
llg@ + Vg's 1< @,

" where a€R™ and BER™ " is symmetric and nonsingular. Problem QPQ is

the basis of our trust region approach to equality constrained
minimization. Its solution is given by the following lemma.
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LEMMA 3.1 Problem QPQ 1s solved by :

s@m) = — (B + ul + nVg@Vg@?h)~ ! (a + Ygzng(@)

for pwm 20 such that lis@,mll; = A and |l gz) + Vg)'s 112 = 8, un-
less:

llg)+Vg@s0.00f < 6, end lIs@.0F < A in which case
s(0,0) is the solution, . .

llgz)+Vg@ s, 012 < 8, and s, 0 = A in which case
s(i,0) is the solution,

llg@y+Vg@)s©,mI = 6, and lIsO,mll < A in which case
s(0,m) 1is the solution.

Proof. The proof is a straightforward application of the necessary
conditions of constrained optimization. O

By defining a and B in various ways we can giow now the solution to
problem QPQ is related to existing theory. The following theorem shows
that if the quadratic model g(s) is the Taylor expansion of f, and the
trust region constraint is not binding, then our step is the Newton step
on the standard penalty function with penalty constant 7. It is
important to note that 7 is not a free parameter, but is determined by
the solution to problem QPQ.

THEOREM 3.1 Let @ = Vf(z) and B = V3f(x). If V3f(z) is nonsingu-
lar and A is such that the constraint lisli £ A is not binding, then
s(0,m) is the Newton step for the standard penalty function

P(z) = f@ + Ingag@ .

Moreover, if V3f(z) is positive definite, then for any i 2 0, s(u.n) is a
descent direction for P(z).

Proof. The proof of the first part is straightforward from the
definition of the Newton step for minimizing a function. Details can be
found in section 5.5 of Dennis and Schnabel fl]. In this case
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s, = — (V¥f@) + nVg@Vg@T)1(Vf@) + Va@mg@).

To prove that s(u,n) is a descent direction for P, it is sufficient to show
that VP(z)"s(u.m) < 0. Noting that 2 and 7 are nonnegative, V3f(z) is
positive definite, and VP(z) = Vf(z) + Vg(z)ng(z), we have

VP@Tsqm = — VP@T (V@) + pl +nV9@Vg@’)"'VPa) < 0.0

Now we show that if q(s) is the Taylor expansion of the Lagrangian
function, then the step that solves problem QPQ is the Newton step on
the augmented Lagrangian function

- AL(z,\) = fa) + Ng(z) + %ng(z)rg(z).

Again, it is important to note that the penalty constant is determined by
the solution to problem QPQ.

THEOREM 3.2 Let @ = V,L(z.\) and B = VZL@z,\). If V&L(z.\) is
nonsingular and A 1is such that the constraint lIsll £ A is not binding,
then 5(0,7;) is the Newton step for the augmenied Lagrangian. More-
over, if V&L(z,\) is positive definite, then forara 1 Z 0, s(u.m) is a
descent direction for AL(z,\).

Proof. The proof is analogous to ihe proof of the previous
theorem. O

We have shown how our approach relates to the standard penally
function and the augmented Lagrangian. It is also possible to relate the
solution to problem QPQ to sgp, the solution of problem QP. We know

Sqp = -B-1 (Vf(I) + Vg($)>\) .

~ where

A= (Vg(:c)fB"1Vg(x))“1(g(z)-Vg(x)TB‘1Vf(:c)) .

See Tapia [13] for details and background material. The following
theorem shows that one should not expect the solutions of problems
QPQ and QP to be the same. It is reasonable to compare solutions of the

two problems only in the case that the trust region constraint in problem
QPQ is not binding.
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THEOREM 3.3 Let @ = V_L(z,\), and A be such that the constraint
lisll € A is not binding. Then the solution of problem QPQ is the solu-
tion to problem QP if and only if the unconstrained minimizer of the
quadratic, q(s), satisfies linearized constraints.

Proof. First we will assume that sqp = s(u,m) and show that the
unconstrained minimizer of _q(s) satisfies linearized constraints.

Since sgp solves problem QP‘.‘it satisfies linearized constraints, i.e.,
g(z) + ,Vg(x)rsq}: = 0. |
Given that s(u2,n) = sgp, We have
g(@) + Vg@)Isqe,m) = 0.

If 6 =0, we observe that problems QP and QPQ are equivalent,
therefore, we consider 8 > 0. Since 68 > 0 the constraint

ligx) + Vg@)TslE £ 6,

is not binding and the multiplier 77 associated with this constraint is 0.
Since lisll £ A, is assumed not to be a binding constraint, the solution
to problems QP and QPQ is :

s00) = =B~ (Vlzx)
which is the unconstrained minimizer of g(s). _
Next we must show that if the unconstrained minimizer of g¢(s)

‘satisfies linearized constraints, then sgp = s(u,n). The result follows from

the fact that in this case both problems become the same unconstrained
minimization problem. O

As we progress through the iterations of -our algorithm we should
expect to have A large and 6-0. Clearly for A sufficiently large we will
have p = 0. Also from Theorem 3.3 we are led to conjecture that n—e as
6-+0. Hence, we are interested in the behavior of the solution of problem
QPQ as - and u-0. The following theorem gives us this behavior,
which can be viewed as a form of consistency. Namely, while the solution
of problem QP and problem QPQ are in general never the same; as )=
and w-0 the solution™ of problem QPQ approaches the solution of
problem QP. Thus we should expect our algorithm to eventually generate
steps which are arbitrarily close to the SQP step. In practice we have
found this to be the case. These comments are the subject of the
following theorem.
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THEOREM 3.4 Let a = V,L(z,\), and B be positive definite. Then

im  sem =
(o) T = SeB

Proof. To ?i'ove this theorem we need to obtain
(B+pl+nVgx)Vg@f)~1. By the Sherman-Morrison-Woodbury formula,
see page 50 of Ortega and Rheinboldt [8], we have

(B+ul+nVg@mVg@)~t = (B+ul)~! —n(B+ul)~1Vg@
[1+nVg@)(B+wl) ™ Vg@ ] Ve@T(B+pl)~L

Therefore,

sy = — ((B+ul)+nVga@Vg@T) YVl N +Vg@mg@)

= — (B+ul)™WI - V@[3 +Vg@)T(B+ul) ~Vg@] V@) (B+pul)~?)
(VL@ + Vgmg@) |

= — (B+,u,1)"1(V,L(z,A)+Vg(z)[%I_ +Vg@) (B+pl)~WVgz)]~t
(9@)—-Vg@ T (B+ul)~1V Liz,N) )

Taking limits as 77—+ and u—0 we have

s =  —B-1(V LEN+Vgm[Ve@T B~ 1Vgm] !
( g@)—Vg@ B~V Lz N) ).

lim
Trem)=(0,)

It is straightforward to see that by substituting Vf(z)+Vg(z)A for V.L(z,\)
we obtain sgp. O

4. Numerical Results. In order to study the effectiveness of our
approach from arbitrary starting points, we produced a preliminary
implementation. Problem QPQ was solved by a modification of the
iterative process that was first suggested for nonlinear least squares by



Hebden [4] and Moré £6]. For our quadratic objective function we choose
q(s) = V@ s + 1sTV%f@@)s with no multiplier approximations. Although
the algorithm is not completely defined, we wanted to obtain some feel
for the robustness of the approach. For this we comfared our method,

SQPQC, with an SQP approach, VF02AD by Powell [9], which is available
in the Harwell Subroutine Library. -

We now list a subset of our test problems. These problems are
referenced and can be found in Hock and Schittkowski [5]. The number
in parentheses denotes the number given to this problem in [5], n is the

number of variables in the problem, and m is the number of equality
constraints. '

Problem1 (60) =n =3, m =1
f@ =(zy - 12+ (5 — 5 + (22~ z3)*

1
g1(z) =z, (1 + 22) + 18 — 4 - 3(2)*% )

z, ~ (1.1048, 1.1966, 1.5352)

Problem 2 (77) = = 95, m = 2
f@ =(zy - 1%+ (2~ )2 + (zp — 73)% + (34 — 1)* + (75— 1)°
(@) =z + sin(zy - 25)-2(2)°

goz) =122 + x%-fi -8- (2)%

z, ~ (1.1661, 1.1821, 1.3802, 1.5060, 0.6109)

—

Problem3(79) =n =5 m = 3
f@ =(z— 12+ (3 — 222 + (zp—23)° + (3¢ — 1)* + (z5s = 1)*
g,(@) =z, +23 +23 - 2-3(2)*
go(z) =zp+75 +174+2 - 2(2)%
93(z) =zy75— 2

z, ~ (1.1911, 1.3626, 1.4728, 1.6350, 1.6790)



-yt

a o -

'‘Problem4(78) n =5 m = 3
f(@) = T172T3%4%5

gi(z) =3+ g+ +23+ %10
ga(z) = zoT3 — OT4T5

g3(z) =z3+z3 +1

z,  ~(—1.7171, 1.5957, 1.8272, —0.7636, —0.7636)

The results from this subset of test problems are reported in
Table 1. The column labeled Convergence indicates whether or not
convergence was obtained, and the number in parentheses indicates the
number of iterations the algorithm took to converge. This number does
not give meaningful comparisons for many reasons, including the fact
that the algorithm is only in a preliminary stage. We have, however,
included it for completeness. .

Although the number of problems is small, it can be seen that
SQPQC converges for all the problems that VF0ZAD converges. We have
found several problems where the linesearcheroutine in VF02AD fails, and
thus halts, but our trust region rouume-is successful. For example,
problem 2 with starting point (10, 10, 10, 10, 10). At the first iteration
in VFO2AD, the line search routine fails to locate a better point.
Whereas, our trust region routine succeeds in finding a next iterate and
proceeds to find the solution.

t

5. Concluding Remarks. We have presented a framework for a trust.

_region approach for solving equality constrained optimization. problems.

At each iteration the subproblem we solve is not in general the successive
quadratic programming, (SQP), subproblem. We have motivated the-

conjecture that asymptotically our step is the same as the step produced
by solving the SQP subproblem.

The theoretical results presented in this paper, although
preliminary, have established important links between the step selection
process and several widely used merit functions. We have shown that the
step we obtain is a descent direction on either the standard penalty
function or the augmented Lagrangian function, where each penalty
constant is provided by the solution to the associated subproblem.

A preliminary implementation of our approach has produced good
numerical results. These numerical results, and the preliminary theory,

-9 -



Problem Starting Point Convergence (No. of Iterations)
VF02AD SQPQC
1 (1.5,1.5,1.5) Y (6) Y (16)
1 (1,2,3) Y (10) Y (17)
1 (1.4,15,1.9) 1 Y (™ Y (16)
1 (11,12,15) Y (19) Y (24)
1 (2.7,2.9,3.8) Y (10) Y (19)
1 (27,29,38) Y (36) . Y (31)
1 (10,10,10) - Y (17) Y (23
2 (1,1,1,1,1) - Y (13) Y (17
2 (10,10,10,10,10) N (*¥) Y (22
2 (2,2,2,2,2) Y (15) Y (11
2 (-1.3.-0.5,-2-3) | N(*) N (%)
2 (-3,-3,3,9,0) Y (21) Y (38
2 (-1,8,3,3,0) N (* Y (31
2 (4,3,7,-5,-3) N (* N (*)
3 (-1,3,-0.5,-2,-3) Y (10 Y (10)
3 (-1,2,1,-2,-2) Y (16 Y (30)
3 (1,1,1,1,1) Y (8) Y (6)
3 (10,10,10,10,10) Y (18) v (31)
3 (2,2,2,2,2) - Y (9) 4 Y (7)
3 (-2,-2,-2,-2,-2) Y (16) Y (25)
4 (-1,1.5,2,-1,-2) Y (10) Y (11)
4 (-10,10,10,-10,-10) | Y (21). Y (9)
4 (-1,2,1,-2,-2) Y (9) Y (5)
4 (-1,-1,-1,-1,-1) Y (9 Y (5)
4 (-2,2,2,2,2) Y (7 Y (5)

lead us to believe that our approach is worthy of continued research.
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